
- Get in Touch with Us
Last Updated: Apr 25, 2025 | Study Period: 2023-2030
An encounter with inflight icing can be deadly for any aircraft. Ice detectors, installed on many transport aircraft, provide critical icing information to the flight crew and aircraft ice protection systems.
Aerospace manufactures many of the ice detectors installed on airliners, small jets, and turboprop aircraft. The Aerospace vibrating probe ice detector consists of a housing, mounting plate, wing-shaped strut, and a small probe.
The device looks simple enough from the outside, but uses some interesting physics to do its job. The ice detector is part of an automated ice protection system.
Using signals from the ice detector, the system automatically activates aircraft ice protection systems when needed. An automatic system improves fuel efficiency and reduces wear on moving parts. Best of all, the primary automatic system reduces pilot workload.
An electric current induces the probe to resonate (vibrate) at a specific ultrasonic frequency. Ice accumulation on the probe causes the resonance frequency to decrease. Detector logic senses the change in frequency and triggers a crew advisory or, in an automatic system, signals ice protection systems to activate.
During icing conditions, the probeâs internal heater cycles on and off to clear ice accumulation. The sampling and heating cycle allows the detector to continuously sense (and in some detectors, measure) ice accumulation.
The Global Aircraft airframe icing sensor market accounted for $XX Billion in 2022 and is anticipated to reach $XX Billion by 2030, registering a CAGR of XX% from 2023 to 2030.
THEIET Ice sensors developed to detect build-up on aeroplane wingsThe team from UBC Okanaganâs School of Engineering aimed to develop a sensor that could detect the precise moment when ice begins to form on a surface. Due to their high sensitivity, low power, ease of fabrication and planar profile, the team chose to use microwave resonators.
The sensors give a complete picture of the icing conditions on any surface, like an airplane wing. They can detect when water hits the wing, track the phase transition from water to ice and then measure the thickness of the ice as it grows, all without altering the aerodynamic profile of the wing.
Sl no | Topic |
1 | Market Segmentation |
2 | Scope of the report |
3 | Abbreviations |
4 | Research Methodology |
5 | Executive Summary |
6 | Introduction |
7 | Insights from Industry stakeholders |
8 | Cost breakdown of Product by sub-components and average profit margin |
9 | Disruptive innovation in the Industry |
10 | Technology trends in the Industry |
11 | Consumer trends in the industry |
12 | Recent Production Milestones |
13 | Component Manufacturing in US, EU and China |
14 | COVID-19 impact on overall market |
15 | COVID-19 impact on Production of components |
16 | COVID-19 impact on Point of sale |
17 | Market Segmentation, Dynamics and Forecast by Geography, 2023-2030 |
18 | Market Segmentation, Dynamics and Forecast by Product Type, 2023-2030 |
19 | Market Segmentation, Dynamics and Forecast by Application, 2023-2030 |
20 | Market Segmentation, Dynamics and Forecast by End use, 2023-2030 |
21 | Product installation rate by OEM, 2023 |
22 | Incline/Decline in Average B-2-B selling price in past 5 years |
23 | Competition from substitute products |
24 | Gross margin and average profitability of suppliers |
25 | New product development in past 12 months |
26 | M&A in past 12 months |
27 | Growth strategy of leading players |
28 | Market share of vendors, 2023 |
29 | Company Profiles |
30 | Unmet needs and opportunity for new suppliers |
31 | Conclusion |
32 | Appendix |