Global Automotive Machine Learning Market 2021-2026

    Multi User License - $2,800

    In Stock

    Coming Soon

    GLOBAL AUTOMOTIVE MACHINE LEARNING MARKET

     

    INTRODUCTION

    Numerous production activities in the automobile industry are nevertheless heavily reliant on human choices based on experience.

     

    The advent of Big Data in combination with machine learning in automotive industries has created an opportunity for operational and strategic reforms, resulting in better decision-making accuracy and performance improvement.

     

    Machine learning techniques, such as text and tweet analytics, can correctly incorporate analysis findings of client input in social media.

     

    This aids in the development of vehicle and subsystem performance in order to guide future product design. It also aids in the detection of failure patterns, which aids in the establishment of a link between the failure and the reasons of failure.

     

    infographic: Automotive Machine Learning Market, Automotive Machine Learning Market Size, Automotive Machine Learning Market Trends, Automotive Machine Learning Market Forecast, Automotive Machine Learning Market Risks, Automotive Machine Learning Market Report, Automotive Machine Learning Market Share

     

    Consider an automobile firm that discovered that the root cause of failure in various activities in the car is related to region-specific difficulties such as poor fuel properties, environmental conditions, road systems, and so forth.

     

    Customization and intelligent personal support are made easier by machine learning. It includes analytical data and incorporates user personality features, resulting in consumer profiling that may subsequently be used for customisation and help.

     

    Machine learning algorithms may be very beneficial in tackling automobile industry issues; however, businesses deploying Big Data analytics and neural network models must understand how to choose the best method and feedback vectors for a problem situation domain.

     

    GLOBAL AUTOMOTIVE MACHINE LEARNING MARKET DEVELOPMENTS AND INNOVATIONS

    S No Overview of Development Development Detailing Region of Development Possible Future Outcomes
    1 The future of Automated and Connected cars is closely tied Building a modern car involves engineering expertise and software expertise. The two go hand in hand, and the importance of either cannot be ignored. This has given software companies the chance to showcase their know-how in making cars safer with technology. One such company is MathWorks, which has been involved in the automobile sector. Global Scale This would enhance better Technologies and production

     

     

    GLOBAL AUTOMOTIVE MACHINE LEARNING MARKET DYNAMICS

    AI and machine learning have applications throughout the automotive supply chain. It is now being used in automobile manufacturing, covering design, supply chain, manufacture, and post-production.

     

    Furthermore, AI ML is being used in ‘driving support’ and driver risk evaluation systems, which are revolutionising the transportation industry. AI is also revolutionising aftermarket services including such condition monitoring and insurance.

     

    The use of machine learning in the automobile sector has resulted in the development of new intelligent products and improved working methods.

     

    The vast quantity of data produced by connected automobiles may be used to construct algorithms that forecast when repair is required or to categorise driver behaviour.

     

    As users can quickly embrace driver-assist technology to minimise driving load and assure road safety, demand for self-driving vehicles will skyrocket throughout the anticipated timeframe. To gain a competitive edge, automotive manufacturers are taking note of these trends and developing novel driver aid systems.

     

    Autonomous technology can provide accessibility to identity mobility for those with impairments and the elderly, while also lowering long-distance vehicle and buses driver fatigue.

     

    However, the high cost of autonomous technology, concerns with self-driving car accidents, and the hazards of cyber-attacks on linked vehicles may stymie consumer needs.

     

     

    GLOBAL AUTOMOTIVE MACHINE LEARNING MARKET SEGMENTATION

    The Global Automotive Machine Learning Market can be segmented into following categories for further analysis.

    By Type

    • Tow Vehicle
    • Unit Load Carrier
    • Pallet Truck
    • Forklift Truck
    • Hybrid Vehicles
    • Others

     

    By Vehicle Classification Type

    • Passenger Vehicles
    • Light Commercial Vehicles
    • Heavy Commercial Vehicles

     

    By Technology Focus Type

    • Neural Network Analysis
    • Image Recognition Analysis
    • Video Recognition and Analysis

     

    By Technological Usage Type

    • IC Engine Usage
    • Hybrid Propulsion Engine Usage

     

    By Regional Classification

    • Asia Pacific Region – APAC
    • Middle East and Gulf Region
    • Africa Region
    • North America Region
    • Europe Region
    • Latin America and Caribbean Region

     

    RECENT TECHNOLOGICAL TRENDS IN GLOBAL AUTOMOTIVE MACHINE LEARNING MARKET

    Machine Learning is a subfield of Artificial Intelligence that focuses with aspects of the human brain such as image detection, object recognition and categorization, class forecasting, and so forth.

     

    All of the above instances are activities that the neural network is capable of performing. Machine learning attempts to model the human brain by constructing Artificial Neural Networks that make educated judgments.

     

    Considering recent technological advancements and technologically advanced Artificial Intelligence growing more powerful, automated/self-driving automobiles are no more a relic of the past.

     

    The automotive sector is utilising the machine learning algorithms in a considerable way towards better optimised approach in the industrial manufacturing and operability. Machine learning tries to imitate human brain capabilities such as image recognition.

     

    Humans can now develop neural networks with the assistance of machine learning, software, and machine learning experts that can recognise faults in auto components whatever those problems are, such as identifying rust in car parts, detecting bends and melted parts in cars, and so on.

     

    Managers in the automobile sector may gather data on every area of their processes, including such inventory retrieval, energy use, and time to fulfilment for previous designs, using intelligent systems.

     

    AI-powered software will then assist them in extracting insights from this data, such as advice for increasing productivity, minimising unanticipated errors, and boosting workplace health and safety.

     

    Automakers can check the health of complex equipment using predictive intelligence. The benefits of this strategy are evident since it enables for the continuous operation of the parts production facility even though all potential problems with maintenance operations, repair, and substitution are addressed already when they emerge (reactive maintenance).

     

     

    AUTOMOTIVE MACHINE LEARNING MARKET COMPETITIVE LANDSCAPE

    The system examines the equipment, analyses its specifications to industry and safety regulations, adds special information out about company’s current operation, and receives a prognosis about when a specific item will fail.

     

    The goal of reactive maintenance is to avoid this circumstance by replacing a crucial element before it causes a system crash.

     

    However, if an unexpected circumstance has already occurred, it is a solid reason to examine the requirements and determine the root cause. Data is essential for artificial intelligence and machine learning.

     

    BMW is one of the leader in the development of the machine learning models for better enhancements on the present technology presence in the market.

     

    The Machine learning has been integrated as an approach towards the umbrella of Artificial intelligence integration in the industry. The technology operates in such a manner wherein, every car has several electrical customers, such as seat warming, infotainment systems, air conditioning, and so on.

     

    In many situations, the driver is unaware that utilising these consumables has an impact on Air quality and/or vehicle range. BMW Group AI experts are working on AI-based software for an in-power management.

     

    Using user behaviour and route data as a foundation, the network learns how and when to adapt power consumption in the automobile as quickly and efficiently as possible to the driver’s needs or the need for fuel efficiency. CO2 emissions may be decreased, energy conserved, and operational range expanded in this manner.

     

    Audi is also part of the innovation perspective in the automotive industry focusing on better reliability and analysis. Audi’s software identifies and records the smallest flaws in sheet metal components quickly, consistently, and in a matter of a few seconds.

     

    Audi is boosting artificial intelligence within the corporation and modernising the manufacturing testing process with this initiative.

     

    Audi scrutinises all components right after manufacture in the press shop due to the increasingly complicated design of its automobiles and the company’s rigorous quality requirements. In complement to staff eye inspection, numerous tiny cameras are mounted directly in the presses. They use image-recognition algorithms to assess the collected photos.

     

    AUTOMOTIVE MACHINE LEARNING MARKET COMPANIES PROFILED

     

    Sl no Topic
    1 Market Segmentation
    2 Scope of the report
    3 Abbreviations
    4 Research Methodology
    5 Executive Summary
    6 Introduction
    7 Insights from Industry stakeholders
    8 Cost breakdown of Product by sub-components and average profit margin
    9 Disruptive innovation in the Industry
    10 Technology trends in the Industry
    11 Consumer trends in the industry
    12 Recent Production Milestones
    13 Component Manufacturing in US, EU and China
    14 COVID-19 impact on overall market
    15 COVID-19 impact on Production of components
    16 COVID-19 impact on Point of sale
    17 Market Segmentation, Dynamics and Forecast by Geography, 2021-2026
    18 Market Segmentation, Dynamics and Forecast by Product Type, 2021-2026
    19 Market Segmentation, Dynamics and Forecast by Application, 2021-2026
    20 Market Segmentation, Dynamics and Forecast by End use, 2021-2026
    21 Product installation rate by OEM, 2021
    22 Incline/Decline in Average B-2-B selling price in past 5 years
    23 Competition from substitute products
    24 Gross margin and average profitability of suppliers
    25 New product development in past 12 months
    26 M&A in past 12 months
    27 Growth strategy of leading players
    28 Market share of vendors, 2021
    29 Company Profiles
    30 Unmet needs and opportunity for new suppliers
    31 Conclusion
    32 Appendix

     

    0
      0
      Your Cart
      Your cart is emptyReturn to Shop