
- Get in Touch with Us
Last Updated: Apr 25, 2025 | Study Period: 2022-2027
Batteries are made to charge more quickly, be more heat resistant, and maintain efficiency over many years of charging and discharging thanks to chemicals utilised inside the battery.
The cathode, anodes, and electrolytesâthe three essential components of a Li-Ion batteryâare frequently made or improved using specialised additives, coatings, binders, and composite materials created by the chemical industry.
Consider chemicals as one example, which can have an impact on the battery's electrochemical reactions and ultimately its performance.Chemicals can also be used to treat Li-Ion battery overheating, which lowers the battery's performance and results in breakdown.
Another method the industry has discovered to increase the efficiency of batteries is to substitute composite materials for metal. Using silicon in the battery's electrodes, for instance, might expand the range of electric vehicles.
The Japan EV Chemicals market accounted for $XX Billion in 2021 and is anticipated to reach $XX Billion by 2026, registering a CAGR of XX% from 2022 to 2027.
The second phase of a significant solid-state Li-ion battery project has been started by Japan's New Energy and Industrial Technology Development Organization (NEDO), which is working to develop safe, high energy density batteries for electric vehicles.
Additionally, the project will provide modelling technology to forecast how all-solid LIB cells and battery packs will age as well as test evaluation techniques for robustness and safety with global standardisation.
The project's ultimate goal is to reduce the price of battery packs by around a third compared to the price of current lithium-ion batteries. Additionally, the research aims for a fast-charge time of 10 minutes, which is roughly one-third of the time required for lithium-ion batteries.
Sl no | Topic |
1 | Market Segmentation |
2 | Scope of the report |
3 | Abbreviations |
4 | Research Methodology |
5 | Executive Summary |
6 | Introduction |
7 | Insights from Industry stakeholders |
8 | Cost breakdown of Product by sub-components and average profit margin |
9 | Disruptive innovation in the Industry |
10 | Technology trends in the Industry |
11 | Consumer trends in the industry |
12 | Recent Production Milestones |
13 | Component Manufacturing in US, EU and China |
14 | COVID-19 impact on overall market |
15 | COVID-19 impact on Production of components |
16 | COVID-19 impact on Point of sale |
17 | Market Segmentation, Dynamics and Forecast by Geography, 2022-2027 |
18 | Market Segmentation, Dynamics and Forecast by Product Type, 2022-2027 |
19 | Market Segmentation, Dynamics and Forecast by Application, 2022-2027 |
20 | Market Segmentation, Dynamics and Forecast by End use, 2022-2027 |
21 | Product installation rate by OEM, 2022 |
22 | Incline/Decline in Average B-2-B selling price in past 5 years |
23 | Competition from substitute products |
24 | Gross margin and average profitability of suppliers |
25 | New product development in past 12 months |
26 | M&A in past 12 months |
27 | Growth strategy of leading players |
28 | Market share of vendors, 2022 |
29 | Company Profiles |
30 | Unmet needs and opportunity for new suppliers |
31 | Conclusion |
32 | Appendix |