Global Automotive Current Sensors Market 2021-2026

    Multi User License - $2,500

    In Stock

    Coming Soon




    Current Sensor is a gadget that uses a magnetic field to detect and create a proportional output to measure the current flowing through a wire. Electrical currents of both types are supported. Without disrupting a circuit, we may measure current passively with the help of current sensors Around the conductor who’s current we’d like to measure, they’re positioned.


    The magnetic field produced by the current flowing through your conductor induces a proportional current or voltage in the wire that is within the current sensor. The sensor then outputs a certain voltage or current that a meter connected to the sensor can read and translate into the amount of current flowing through the conductor.


    infographic: Automotive Current Sensors Market, Automotive Current Sensors Market Size, Automotive Current Sensors Market Trends, Automotive Current Sensors Market Forecast, Automotive Current Sensors Market Risks, Automotive Current Sensors Market Report, Automotive Current Sensors Market Share


    Sensors in various situations must be resistant to large supply transients, which makes the design of sensor power supplies much more difficult. An operational temperature range of typically between -40°C and +125°C is needed in most cases A careful selection of materials and components is required for this. There must be no drift in the magnetic field sensors, and there must be no drift in the magnetic circuit across the operational flux range.


    Closed-loop current sensors with high self-heating are practically removed as a result of these changes. Mechanical configuration is another factor to consider. Outside of any electronic enclosures, sensors may be placed in the open air in a variety of applications Here, sensors must be watertight (IP65 or above).




    S No Overview of Development Development Detailing Region of Development Possible Future Outcomes
    1 TDK Corporation releases latest technology of automotive sensors TDK Corporation released the CUR 4000 sensor, which expanded its Micronas Hall-effect sensor portfolio. This sensor is developed for highly precise current measurements in automotive & industrial applications, which provides non-intrusive, galvanic isolated contactless current sensing. All these features would contribute to the future of high-voltage systems of hybrid and electric vehicles (xEV). USA This would enhance better Technologies and production
    2 Melexis launches High end Electric current sensor for Premium Automotive Melexis unveiled the MLX91216 XHF extra high-field current sensor. This launch expanded the ease and precision of its distinct IMC-Hall technology into high-current measurement for increasing automotive applications. USA This would enhance better Technologies and production




    BMS has been using current sensing for a long time to safeguard batteries from misuse and to trigger safety shutdowns when overcurrent is detected. The criteria for current sensing, on the other hand, are getting increasingly strict. Batteries with a high energy density, such as Lithium Iron Phosphate (LFP) or Lithium-titanate (LTO), have a very constant output voltage over a wide range of capacities, necessitating that their State of Charge (SoC), Health (SoH), and Functions (SoF) be determined by coulomb counting.


    Expected rise in demand for Hall Effect technology in present sensors. In addition to linearity and high accuracy, Hall effect technology has a broad bandwidth. Since the advent of hall-based technology, there has been a rise in the need for current coreless sensors. Because of this, producers benefit from a smaller bill of materials (BOM), smaller design size, and more penetration into other vertical sectors.


    As the automotive and transportation industries develop, the Automotive Sensors Market has been increasingly popular in recent years. As a result, this product’s demand has skyrocketed in the last several years. Sensor-based and AI-driven vehicles have opened up a significant industry development prospect. Because of the wide range of products available, they may be used in a wide range of industries and fields. Additionally, the affordability of these goods has contributed to their widespread acceptance throughout the globe. Automobile sensors are increasingly being used in a wide range of vehicles, including passenger automobiles and trucks.


    China, Japan, and South Korea are anticipated to have a large demand for these sensors due to their growing usage in automotive, building automation, and industrial industries. China, Japan, and South Korea are just a few of the nations that make up the Asia Pacific area for the automobile sector. It’s the growing adoption of isolated current sensors in hybrid and electric vehicles in the automotive sector that’s fuelling demand for current sensors in the area.




    The Global Automotive Current Sensors Market can be segmented into following categories for further analysis.


    By Vehicle Infrastructure Type

    • Light Commercial vehicle
    • Heavy Commercial Vehicle
    • Passenger Vehicles
    • Military Modernised Vehicles


    By Application

    • Residential Application
    • Commercial Application
    • Industrial Application
    • Military Application
    • High-Capacity User Application
    • Off the Road Vehicles


    By Class of Propulsion

    • Electric Vehicle
    • Hybrid Vehicle
    • Fossil Fuel Vehicle
    • Specialized Fuel Vehicle
    • Gas Based Vehicle


    By Material of Construction

    • Ceramic
    • Semi Metallic
    • Low Metallic NAO
    • Non-Asbestos Organic ( NAO )


    By Regional Classification

    • Asia Pacific Region – APAC
    • Middle East and Gulf Region
    • Africa Region
    • North America Region
    • Europe Region
    • Latin America and Caribbean Region



    With the electrification of mobility and the transformation towards renewable energies, batteries are becoming an essential part of high availability and reliability systems such as energy grid storage and e-mobility vehicles. Representing a major share of the system cost; battery efficiency, energy density, and lifetime requirements are ever-increasing, pushing for constant innovation in the battery technologies.


    There has been recent development being integrated within the current sensor technologies, which incudes the Shunt based and Magnetic Based Current sensors. They detect the voltage drop across a precision resistor to estimate the current flowing through a shunt. There are certain drawbacks to using this resistive measure at high and low currents. It is possible that at low current levels, the output voltage clamping of the sensor interfaces will cause an overestimation of the currents.


    Magnetic based sensors are based upon latest integrations wherein, There’s no need for power dissipation because magnetic current sensors are contactless. Parameter adjustments and a combination of readout measurements can be used to compensate for sensor offsets caused by an imbalanced measuring bridge as well as temperature and stress effects.


    Functional safety requirements are increasing in several industries including automotive and high-density energy storage. The use of both technologies, shunt and magnetic, is becoming more and more popular. Furthermore, it strengthens the system’s variety, therefore minimising common flaws and hidden defects that are not visible to the naked eye.



    For automobiles, sensors are used for controlling motor drive, direct current conversion control of motor regenerative current and detecting charged and discharged current of batteries of electric automobiles and hybrid cars, which play a very important role as core parts of control. Since current sensors for automotive applications need to guarantee high reliability, there has been continued usage of high-reliability parts, and rigorously manage traceability and in-process inspections.


    Koshin Electric Corporation has been imparting new technologies within the automotive requirements, to have better compliance and better standards maintained within the automotive systems of operations. It has recently introduced the Hall Effect Current sensor within the requirements, wherein this minimizes power loss of the target current circuit and has a simple structure with high reliability. A hall effect current sensor allows non-contact detection of direct and alternating currents, using a hall element, a magnet-electric converting element. This type of sensor have a hall element that is fit inside a gap in the core that surrounds the current bus. This hall element detects the magnetic field generated by the target current (I) and converts it into a voltage.


    Continental Automotive has been part of the new technologies of integration within the automotive systems of operations at varied levels of operations. In electric or hybrid cars, Continental’s shunt/magnetic-based current sensor is utilised in high-voltage Battery Management Systems (BMS). As well as providing information on current and temperature, the Current Sensor Module (CSM) also delivers information to the BMS Electronic Control Unit through a CAN interface. For high-voltage battery systems, the CSM has a compact design with an integrated bus bar, incorporating galvanic separation of high-voltage and low-voltage pathways. At the system level, it supports up to ASIL D.




    Sl no Topic
    1 Market Segmentation
    2 Scope of the report
    3 Abbreviations
    4 Research Methodology
    5 Executive Summary
    6 Introduction
    7 Insights from Industry stakeholders
    8 Cost breakdown of Product by sub-components and average profit margin
    9 Disruptive innovation in the Industry
    10 Technology trends in the Industry
    11 Consumer trends in the industry
    12 Recent Production Milestones
    13 Component Manufacturing in US, EU and China
    14 COVID-19 impact on overall market
    15 COVID-19 impact on Production of components
    16 COVID-19 impact on Point of sale
    17 Market Segmentation, Dynamics and Forecast by Geography, 2021-2026
    18 Market Segmentation, Dynamics and Forecast by Product Type, 2021-2026
    19 Market Segmentation, Dynamics and Forecast by Application, 2021-2026
    20 Market Segmentation, Dynamics and Forecast by End use, 2021-2026
    21 Product installation rate by OEM, 2021
    22 Incline/Decline in Average B-2-B selling price in past 5 years
    23 Competition from substitute products
    24 Gross margin and average profitability of suppliers
    25 New product development in past 12 months
    26 M&A in past 12 months
    27 Growth strategy of leading players
    28 Market share of vendors, 2021
    29 Company Profiles
    30 Unmet needs and opportunity for new suppliers
    31 Conclusion
    32 Appendix


      Your Cart
      Your cart is emptyReturn to Shop