By submitting this form, you are agreeing to the Terms of Use and Privacy Policy.
Electronic devices known as temperature sensors are used to measure and track temperature variations in various situations. Numerous applications, including industrial processes, consumer electronics, HVAC systems, medical equipment, automotive systems, and scientific research, make extensive use of them.
The principle of thermal expansion or changes in electrical characteristics with temperature is how temperature sensors operate. Several popular temperature sensor types are listed below:
Thermocouples: The temperature differential between a thermocouple’s junction and its reference junction causes a voltage to be generated by two different metals or metal alloys that make up a thermocouple. They have a wide temperature range, are easy to use, and are durable.
Resistance Temperature Detectors (RTDs): RTDs are based on the idea that some metals, including platinum, vary their electrical resistance as a function of temperature. High accuracy and stability are features of RTDs over a broad temperature range.
Thermistors: Thermistors are temperature sensors that make use of how temperature affects electrical resistance. They come in two varieties: positive temperature coefficient (PTC) and negative temperature coefficient (NTC) thermistors and are commonly composed of ceramic or polymer materials.
Infrared (IR) sensors detect thermal radiation generated by an object to determine temperature. They are frequently utilized in applications like thermal imaging cameras, home automation systems, and non-contact temperature measurements since they can be contactless.
Semiconductor-based Sensors: These sensors measure temperature using the properties of semiconductor materials. Diode temperature sensors and integrated circuit (IC) temperature sensors are two examples.
Bimetallic Strips: Two distinct metal strips are joined to form bimetallic temperature sensors. The strip bends as a result of the metals’ varying rates of expansion and contraction as a result of temperature changes. Temperature changes are measured using this bending.
Fiber Optic Sensors: Fiber optic temperature sensors work on the premise that temperature changes affect the amount of light that passes through an optical fiber. They have benefits including electromagnetic interference resistance and the capacity to monitor temperature in challenging conditions.
There are many other customized temperature sensors that are available for certain uses; these are just a few examples. The selection of a sensor is influenced by a number of variables, including the need for precision, the temperature range, the response time, the cost, and the environment in which it will be used.
The UAE Temperature Sensors Market accounted for $XX Billion in 2022 and is anticipated to reach $XX Billion by 2030, registering a CAGR of XX% from 2023 to 2030.
In order to monitor facilities and equipment in extremely low and high-temperature conditions, such as laboratories, freezers used for vaccine storage, pharma research facilities, manufacturing plants, and more, AVTECH Software (AVTECH) is happy to introduce their new Digital Extreme Temperature Sensor.
The most widely used environment monitor in the world for business continuity plans is made by AVTECH and is called Room Alert. Made in the USA, Room Alert proactively monitors a variety of environmental factors, including temperature, humidity, flood, electricity, smoke, and more.
Currently, over 80% of the Fortune 1000, the United Nations, all branches of the US military, several state and local governments, thousands of small enterprises, and organizations from all 196 nations across the world use Room Alert.